miércoles, 29 de abril de 2015

Introducción


Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos. 
En concreto, la relevancia de estas leyes radica en dos aspectos:
  • Por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica.
  • Por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.

Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.

Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz(que no se acerquen a los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.

Fuerza e Interacciones

En el sentido más simple, una fuerza es un empujón o un tirón; sin embargo, observando con más detenimiento, Newton comprendió que una fuerza no es algo aislado sino parte de una acción mutua, es decir de una interacción entre una cosa y otra. Por ejemplo, considera la interacción entre un martillo y un clavo. Un martillo ejerce una fuerza sobre el clavo y lo introduce en la tabla. Pero esta fuerza es solo la mitad del cuento, porque debe existir además una fuerza que detenga el martillo. ¿Qué es lo que ejerce esta fuerza?,¡El clavo! Newton dedujo que cuando el martillo ejerce una fuerza en el clavo, el clavo ejerce una fuerza en el martillo. Así pues, en la interacción entre el martillo y el clavo hay un par de fuerzas : una que actúa sobre el clavo y otra que lo hace sobre el martillo. Observaciones de ésta índole llevaron a Newton a formular su tercera ley: la ley de la acción y la reacción.

En física, la fuerza es una magnitud física que mide la intensidad del intercambio de momento lineal entre dos partículas o sistemas de partículas (en lenguaje de la física de partículas se habla de interacción). Según una definición clásica, fuerza es todo agente capaz de modificar la cantidad de movimiento o la forma de los materiales. No debe confundirse con los conceptos de esfuerzo o de energía.

La fuerza es un modelo matemático de intensidad de las interacciones, junto con la energía. Así por ejemplo la fuerza gravitacional es la atracción entre los cuerpos que tienen masa, el peso es la atracción que la Tierra ejerce sobre los objetos en las cercanías de su superficie, la fuerza elástica es el empuje o tirantez que ejerce un resorte comprimido o estirado respectivamente, etc. En física hay dos tipos de ecuaciones de fuerza: las ecuaciones "causales" donde se especifica el origen de la atracción o repulsión: por ejemplo la ley de la gravitación universal de Newton o la ley de Coulomb y las ecuaciones de los efectos (la cual es fundamentalmente la segunda ley de Newton).
La fuerza es una magnitud física de carácter vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles (efecto dinámico). En este sentido la fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una aceleración que modifica el módulo o la dirección de su velocidad).


Comúnmente nos referimos a la fuerza aplicada sobre un objeto sin tener en cuenta al otro objeto u objetos con los que está interactuando y que experimentarán, a su vez, otras fuerzas. Actualmente, cabe definir la fuerza como un ente físico-matemático, de carácter vectorial, asociado con la interacción del cuerpo con otros cuerpos que constituyen su entorno.



Primera Ley de Newton

La primera ley de Newton, establece que un objeto permanecerá en reposo o con movimiento uniforme rectilíneo al menos que sobre él actúe una fuerza externa. Puede verse como un enunciado de la ley de inercia, en que los objetos permanecerán en su estado de movimiento cuando no actúan fuerzas externas sobre el mismo para cambiar su movimiento. Cualquier cambio del movimiento implica una aceleración y entonces se aplica la Segunda ley de Newton; De hecho, la primera ley de Newton es un caso especial de la segunda ley, en donde la fuerza neta externa es cero.

La primera ley de Newton, contiene implicaciones sobre la simetría fundamental del Universo, en la que el estado de movimiento en línea recta debe considerarse tan natural como el estado de reposo. Si un objeto está en reposo respecto de una marco de referencia, aparecerá estar moviéndose en línea recta para un observador que se esté moviendo igualmente en línea recta respecto del objeto. No hay forma de saber que marco de referencia es especial, de modo que, todos los marcos de referencias de velocidad rectilínea constante son equivalentes.






Segunda ley de Newton


Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas. Dicho sintética mente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.





Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo. De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.

La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a). Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con un resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.


Masa y Peso

La masa de un objeto es una propiedad fundamental del objeto; es una medida numérica de su inercia; una medida fundamental de la cantidad de materia en el objeto. Las definiciones de masa a menudo, se ven redundantes porque es una cantidad tan fundamental que resulta difícil definirla en función de algún otro término. Todas las cantidades mecánicas se pueden definir en términos de masa, longitud y tiempo. El símbolo usual de la masa es m y su unidad en el sistema SI es el kilogramo. Aunque la masa se considera normalmente como una propiedad invariable de un objeto, se debe considerar la masa relativista para velocidades cercanas a la velocidad de la luz.


El peso de un objeto es la fuerza de la gravedad sobre el objeto y se puede definir como el producto de la masa por la aceleración de la gravedad, w = mg. Puesto que el peso es una fuerza, su unidad en el sistema SI es el Newton. La densidad es masa/volumen.

Para un objeto en caída libre, la gravedad es la única fuerza que actúa sobre él, por lo tanto la expresión para el peso derivada de la segunda ley de Newton es:





Tercera ley de Newton

Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".La tercera ley es completamente original de Newton y hace de las leyes de la mecánica un conjunto lógico y completo. Expone que por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad y dirección, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y opuestas en dirección.
Es importante observar que este principio de ac
ción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley.
Otra forma de verlo es la siguiente:

Si dos objetos interactúan, la fuerza F12, ejercida por el objeto 1 sobre el objeto 2, es igual en magnitud y opuesta en dirección a la fuerza F21 ejercida por el objeto 2 sobre el objeto 1:



Diagramas de cuerpo libre

Un diagrama de cuerpo libre o diagrama de cuerpo aislado debe mostrar todas las fuerzas externas que actúan sobre el cuerpo. Es fundamental que el diagrama de cuerpo libre esté correcto antes de aplicar la Segunda ley de Newton,  Fext = ma

En estos diagramas, se escoge un objeto o cuerpo y se aisla, reemplazando las cuerdas, superficies u otros elementos por fuerzas representadas por flechas que indican sus respectivas direcciones. Por supuesto, también debe representarse la fuerza de gravedad y las fuerzas de fricción. Si intervienen varios cuerpos, se hace un diagrama de cada uno de ellos, por separado.

A continuación se muestra algunos sistemas (izquierda) y los correspondientes diagramas de cuerpo aislado (derecha). F(ó T) representa la fuerza trasmitida por la cuerda; N la normal; mg el peso y f la fuerza de roce o de fricción.